Wake-Field Damping In A Pair Of X-Band Accelerators For Linear Colliders

نویسندگان

  • Roger M. Jones
  • Christopher Adolphsen
  • Juwen Wang
  • Zhenghai Li
چکیده

We consider means to damp the wake-field left behind ultra-relativistic charges. In particular, we focus on a pair of travelling wave accelerators operating at an X-band frequency of 11.424 GHz. In order to maximize the efficiency of acceleration, in the context of a linear collider, multiple bunches of charged particles are accelerated within a given pulse of the electromagnetic field. The wake-field left behind successive bunches, if left unchecked, can seriously disturb the progress of trailing bunches and can lead to an appreciable dilution in the emittance of the beam. We report on a method to minimize the influence of the wake-field on trailing bunches. This method entails detuning the characteristic mode frequencies which make-up the electromagnetic field, damping the wake-field, and interleaving the frequencies of adjacent accelerating structures. Theoretical predictions of the wake-field and modes, based on a circuit model, are compared with experimental measurements of the wake-field conducted within the ASSET facility at SLAC. Very good agreement is obtained between theory and experiment and this allows us to have some confidence in designing the damping of wake-fields in a future linear collider consisting of several thousand of these accelerating structures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasma Accelerators *

In this paper we discuss plasma accelerators which might provide high gradient accelerating fields suitable for TeV linear colliders. In particular we discuss two types of plasma accelerators which have been proposed, the Plasma Beat Wave Accelerator and the Plasma Wake Field Accelerator. We show that the electric fields in the plasma for both schemes are very similar, and thus the dynamics of ...

متن کامل

The Lock-in Phenomenon in VIV using A Modified Wake Oscillator Model for both High and Low Mass-Damping Ratio

In the present paper the behavior of an elastically mounted cylinder in low and high mass-damping ratio is investigated. For high mass-damping ratio, a classical wake oscillator model is used. At the first, by neglecting all damping and nonlinear terms of this model, the possibility of using a linear model for determination of the lock-in range and the dominant mode is investigated. Then, w...

متن کامل

New Method of Quality Control Test for Light and Radiation Field Coincidence in Medical Linear Accelerators

Introduction: The evaluation of X-ray and light field coincidence in linear accelerators as a quality control test is often performed subjectively, involving the manual marking of films and their visual inspection following the irradiation. Therefore, the present study aimed to develop an objective method for the performance of this test leading to the increased levels...

متن کامل

Damping Effect Studies for X-band Normal Conducting High Gradient Standing Wave Structures*

The Multi-TeV colliders should have the capability to accelerate low emittance beam with high rf efficiency, X-band normal conducting high gradient accelerating structure is one of the promising candidate. However, the long range transverse wake field which can cause beam emittance dilution is one of the critical issues. We examined effectiveness of dipole mode damping in three kinds of X-band,...

متن کامل

Design Considerations for a Second Generation Hom-damped Rf Cavity*

The first generation of strongly HOM-damped RF cavities are now being operated with beam in accelerators with good success. We briefly review these designs and consider some factors in the design of a second generation HOM damped copper RF cavity suitable for use in high current storage rings such as linear collider damping rings, light sources and high luminosity colliders. We consider the pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006